歷史瀏覽

{{ badge.badge_name }}
{{ item.brand_name }} {{ item.group_num + __(" Options") }}
{{ item.item_title }}
{{ item.rank.category_name }} {{ $isZh ? ' ' + item.rank.rank_name +' No.'+ item.rank.rank_num : '#'+item.rank.rank_num + ' ' + item.rank.rank_name }} {{ item.rank.category_name }}
{{ formatNumber(visualViewRate(item)) }} ({{ item.comment.comment_count > 0 ? item.comment.comment_count : __("Be the first!") }})
· {{ viewedItemSaleInfo(item) }}

{{ currency }}{{ priceFormat(item.price.shop_price) }} {{ currency }}{{ priceFormat(item.price.del_price) }}

{{ item.bundle }}
已加入購物車

切換配送區域

不同區域的庫存和配送時效可能存在差異。

歷史郵編

{{email ? __('Got it!') : __('Restock Alert')}}

我們將在商品到貨後第一時間通知你。

取消
Yami
京東圖書

利用Python进行数据分析(原书第2版)

{{ itemCurrency }}{{ item.valid_price }}
{{ itemCurrency }}{{ priceFormat(item.valid_price / item.bundle_specification) }}/{{ item.unit }}
{{ itemDiscount }}
{{ itemCurrency }}{{ item.valid_price }}
{{ itemCurrency }}{{ item.valid_price }}
{{ buttonTypePin == 3 ? __("Scan to view more PinGo") : __("Scan to start") }}
商品描述
展開全部描述
Editer Recommend

阅读本书可以获得一份关于在Python下操作、处理、清洗、规整数据集的完整说明。本书第二版针对Python 3.6进行了更新,并增加实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。

本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。数据文件和相关的材料可以在GitHub上找到:

l 使用IPython shell和Jupyter notebook进行探索性计算

l 学习NumPy(Numerical Python)的基础和高级特性

l 入门pandas库中的数据分析工具

l 使用灵活工具对数据进行载入、清洗、变换、合并和重塑

l 使用matplotlib创建富含信息的可视化

l 将pandas的groupby功能应用于对数据集的切片、分块和汇总

l 分析并操作规则和不规则的时间序列数据

利用完整的、详细的示例学习如何解决现实中数据分析问题


Content Description

本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas、NumPy、IPython和Jupyter,并增加大量实际案例,可以帮助你高效解决一系列数据分析问题。

第2版中的主要更新包括:

•所有的代码,包括把Python的教程更新到了Python 3.6版本(第1版中使用的是Python 2.7)

•更新了Python第三方发布版Anaconda和其他所需Python包的安装指引

•更新pandas库到2017年的新版

•新增一章,关于更多高级pandas工具和一些使用提示

•新增statsmodels和scikit-learn的简明使用介绍


Author Description

Wes McKinney 是流行的Python开源数据分析库pandas的创始人。他是一名活跃的演讲者,也是Python数据社区和Apache软件基金会的Python/C++开源开发者。目前他在纽约从事软件架构师工作

Comments

“本书已经是Python数据生态中的一本经典书籍,本次的新版本对Python 3.6到pandas新特性等关键领域都进行了更新,增强了其独特价值。通过解释为什么以及如何使用Python数据工具,本书以新颖、创造性的方式帮助读者高效地学习了这些工具。它是所有现代化数据密集型计算库的重要组成部分“

——Fernando Perez,加州大学伯克利分校助理教授、IPython创始人、Jupyter项目联合创始


Catalogue

前言1

第1章 准备工作7

1.1 本书内容7

1.1.1 什么类型的数据7

1.2 为何利用Python进行数据分析8

1.2.1 Python作为胶水8

1.2.2 解决“双语言”难题8

1.2.3 为何不使用Python9

1.3 重要的Python库9

1.3.1 NumPy9

1.3.2 pandas10

1.3.3 matplotlib11

1.3.4 IPython与Jupyter11

1.3.5 SciPy12

1.3.6 scikit-learn12

1.3.7 statsmodels13

1.4 安装与设置13

1.4.1 Windows14

1.4.2 Apple(OS X和macOS)14

1.4.3 GNU/Linux14

1.4.4 安装及更新Python包15

1.4.5 Python 2和Python 316

1.4.6 集成开发环境和文本编辑器16

1.5 社区和会议17

1.6 快速浏览本书17

1.6.1 代码示例18

1.6.2 示例数据18

1.6.3导入约定18

1.6.4术语19

第2章 Python语言基础、IPython及Jupyter notebook20

2.1 Python解释器21

2.2 IPython基础22

2.2.1 运行IPython命令行22

2.2.2 运行 Jupyter notebook23

2.2.3 Tab补全25

2.2.4 内省27

2.2.5 %run命令28

2.2.6 执行剪贴板中的程序30

2.2.7 终端快捷键30

2.2.8 关于魔术命令31

2.2.9matplotlib集成33

2.3 Python语言基础34

2.3.1 语言语义34

2.3.2 标量类型42

2.3.3 控制流49

第3章 内建数据结构、函数及文件54

3.1 数据结构和序列54

3.1.1 元组54

3.1.2 列表57

3.1.3 内建序列函数61

3.1.4 字典64

3.1.5集合67

3.1.6 列表、集合和字典的推导式69

3.2 函数72

3.2.1 命名空间、作用域和本地函数72

3.2.2 返回多个值73

3.2.3 函数是对象74

3.2.4 匿名(Lambda)函数75

3.2.5 柯里化:部分参数应用76

3.2.6 生成器77

3.2.7 错误和异常处理79

3.3 文件与操作系统82

3.3.1 字节与Unicode文件85

3.4 本章小结86

第4章 NumPy基础:数组与向量化计算87

4.1 NumPy ndarray:多维数组对象89

4.1.1 生成ndarray90

4.1.2 ndarray的数据类型92

4.1.3 NumPy数组算术94

4.1.4 基础索引与切片95

4.1.5 布尔索引100

4.1.6 神奇索引103

4.1.7 数组转置和换轴104

4.2 通用函数:快速的逐元素数组函数106

4.3 使用数组进行面向数组编程109

4.3.1 将条件逻辑作为数组操作110

4.3.2 数学和统计方法111

4.3.3 布尔值数组的方法113

4.3.4 排序114

4.3.5 唯一值与其他集合逻辑115

4.4 使用数组进行文件输入和输出115

4.5 线性代数116

4.6 伪随机数生成118

4.7 示例:随机漫步120

4.7.1 一次性模拟多次随机漫步121

4.8 本章小结122

第5章 pandas入门123

5.1 pandas数据结构介绍123

5.1.1 Series123

5.1.2 DataFrame128

5.1.3 索引对象134

5.2 基本功能135

......

Introduction

第2版新内容

本书第1版出版于2012年,彼时基于Python的开源数据分析库(例如pandas)仍然是一个发展迅速的新事物。在本次更新、拓展的第2版中,我在一些章节内进行了修改,以解释过去5年中发生的不兼容的变更、弃用和一些新特性。此外,我还添加了新内容,用以介绍在2012年还不存在或者不成熟的工具。最后,我会避免把一些新兴的或者不太可能走向成熟的开源项目写入本书。我希望本版的读者能够发现本书内容在2020年或者2021年仍然几乎像在2017年一样适用。

第2版中的主要更新包括:

所有的代码,包括把Python的教程更新到了Python 3.6版本(第1版中使用的是Python 2.7)

更新了Python第三方发布版Anaconda和其他所需Python包的安装指引

更新pandas库到2017年的最新版

新增一章,关于更多高级pandas工具和一些使用提示

新增statsmodels和scikit-learn的简明使用介绍

除了以上更新内容,我还重新组织了第1版的部分重要内容,使本书对新手来说更易于理解。

本书约定

以下印刷约定将在本书中使用:

斜体(Italic)

表示新的术语、URL、email地址、文件名和文件扩展名。

等宽字体(Constant width)

用于程序清单以及段落中的程序元素,例如变量名、函数名、数据库、数据类型、环境变量、表达式和关键字等。

等宽粗体(Constant width bold)

表示命令或其他应当由用户键入的文本。

等宽斜体(Constant width italic)

表示应当由用户提供的值来替代的文本,或者其他由上下文决定的值。

本符号表示提示或建议。

本符号表示一般性说明。

本符号表示警告。

使用代码示例

可以通过本书的GitHub仓库获取本书每一章中的数据文件和相关材料。GitHub仓库地址:http://github.com/wesm/pydata-book。

本书的目的在于帮助你完成工作。一般来说,本书提供的示例代码,你可以在你的程序或文档中使用而无须联系我们获取许可,除非你需要重造大量代码。举例来说,使用本书中的代码段编写程序无须授权许可,但销售或发行O扲eilly图书的CD-ROM代码示例则需要许可。引用本书代码回答问题不需要许可,但在你的产品文档中大量使用本书示例代码则需要许可。

我们鼓励注明资料来源的行为,但这并不是必需的。来源注明通常包括书名、作者、出版社及ISBN,例如:“Python for Data Analysis by Wes McKinney(O扲eilly). Copyright 2017 Wes McKinney, 978-1-491-95766-0”。

如果你认为你对本书示例代码的使用超过了正常使用范围或者需要以上介绍的授权许可,请联系permissions@oreilly.com。

O'Reilly Safari

Safari(前身为Safari Books Online )是一个会员制的培训、参考网站,服务于企业、政府、教育者和个人。

会员可以访问数千书籍、培训视频、学习路径、交互教程和超过250家出版商的企划列表,包括O'Reilly Media、Harvard Business Review、Prentice Hall Professional、 Addison-Wesley Professional、Microsoft Press、Sams、Que、Peachpit Press、Adobe、Focal Press、Cisco Press、John Wiley & Sons、Syngress、Morgan Kaufmann、IBM Redbooks、Packt、Adobe Press、FT Press、Apress、Manning、New Riders、McGraw-Hill、Jones & Bartlett、Course Technology等。

更多信息,请访问http://oreilly.com/safari。

如何联系我们

对于本书如果有任何意见或疑问,请按照以下地址联系本书出版商。

美国:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

中国:

北京市西城区西直门南大街2号成铭大厦C座807室(100035)

奥莱利技术咨询(北京)有限公司

我们为本书准备了一个网页,用于陈列勘误、示例和其他附加信息。访问地址是:http://bit.ly/python_data_analysis_2e。

针对本书评论或提出技术问题,请发送邮件至:bookquestions@oreilly.com。

关于本书的更多信息、课程、会议及新闻,请访问我们的网站:http://www.oreilly.com。

Facebook联系我们:http://facebook.com/oreilly

Twitter联系我们:http://twitter.com/oreillymedia

YouTube观看我们的视频:http://www.youtube.com/oreillymedia

致谢

本书是全世界很多人多年来富有成效的讨论、协作和支持的成果。我想对他们中的一些代表致以谢意。

怀念:John D. Hunter(1968—2012)

我们亲爱的朋友和同行John D. Hunter在经历了一场与结肠癌的战斗后,于2012年8月28日离开了世界。那时正是我完成本书第1版最终手稿后不久。

John对Python科学计算和数据社区的影响之大难以估量,他给我们留下的遗产价值非凡。除了在2000年初期开发matplotlib之外(那时Python还没有当下如此流行),他还帮助塑造了一代核心开源开发者的文化,如今这些开发者已经成为Python生态系统的顶梁柱,而Python生态系统对于现如今的我们来说似乎是理所当然的。

在2010年1月,我开源生涯的早期,那时候pandas刚刚发布了0.1版本,我便有幸结识了John。即便在最黑暗的时期,他的才华和指导仍在帮助我推动pandas前进,实现Python成为数据分析第一语言的愿景。

John与IPython、Jupyter项目的先锋Fernando Pérez、Brian Granger及其他很多Python社区的倡议人联系紧密。我们四人曾经希望共同写作一本书,但只有我个人时间最为自由,所以这个想法被搁置了。我非常确信他会为过去5年中我们个人及我们社区所取得的成就感到骄傲。

第2版致谢(2017)

距离我在2012年7月完成第1版手稿已经5年了。很多事情都发生了变化。Python社区获得了极大的成长,围绕Python的开源软件生态系统也十分繁荣。pandas核心开发者孜孜不倦的付出,使得pandas项目高速成长,也使得pandas的用户群体遍布Python数据科学生态系统的各个角落,没有他们本书将不会存在。pandas的核心开发者包括但不限于:Tom Augspurger、Joris van den Bossche、Chris Bartak、Phillip Cloud、gfyoung、Andy Hayden、Masaaki Horikoshi、Stephan Hoyer、Adam Klein、Wouter、Overmeire、Jeff Reback、Chang She、Skipper Seabold、Jeff Tratner和y-p。

在第2版的实际写作过程中,非常感谢O扲eilly的工作人员在写作进程中给予的耐心帮助。他们是Marie Beaugureau、Ben Lorica和Colleen Toporek。我再次得到了优秀技术审阅人的支持,他们是Tom Augpurger、Paul Barry、Hugh Brown、Jonathan Coe和 Andreas Müller。感谢你们。

本书的第1版已经被翻译成多种语言,包括汉语、法语、德语、日语、韩语和俄语。将本书翻译给外国读者,是一份工作量大且缺少关注的付出。感谢你们帮助全世界更多人士学会如何编程及使用数据分析工具。

在过去几年中,Cloudera 和Two Sigma投资公司对我的持续开源开发工作的支持使我感到十分幸运。由于开源项目相对于用户基数的比例越来越小,向重要开源项目提供开发支持变得越来越重要。这是一件值得去做的正确工作。

第1版致谢(2012)

如果没有众多相关人士的支持,写作本书对我来说将会十分困难。

对于O扲eilly的工作人员,我非常感谢我的编辑Meghan Blanchette和 Julie Steele,他们在整个写作过程对我给予指导。Mike Loukides 还在建议阶段与我一起工作,帮助本书付梓。

我收到了大量相关人士丰富的技术审阅。尤其是Martin Blais 和Hugh Brown ,他们自始至终在提高本书示例的清晰度、组织度上提供了令人难以置信的帮助。James Long、Drew Conway、Fernando Pérez、Brian Granger、Thomas Kluyver、Adam Klein、Josh Klein、Chang She 和 Stéfan van der Walt 每个人都审阅了本书的一章或多章,从很多角度提供了有效反馈。

我从数据社区的朋友和同行那里获得了很多关于示例和数据集的优秀想法,他们是:Mike Dewar、Jeff Hammerbacher、James Johndrow、Kristian Lum、Adam Klein、Hilary Mason、Chang She和Ashley Williams。

当然,我也非常感激开源科学Python社区的众多领头人,他们为我的开发工作打下了基础,并在本书写作过程中给予我鼓励:IPython核心团队(Fernando Pérez、Brian Granger、Min Ragan-Kelly、Thomas Kluyver和其他相关人士)、John Hunter、Skipper Seabold、Travis Oliphant、Peter Wang、Eric Jones、Robert Kern、Josef Perktold、Francesc Alted、Chris Fonnesbeck以及其他由于人数太多而无法提及的人们。还有很多人士一直以来提供了支持、想法和鼓励:Drew Conway、Sean Taylor、Giuseppe Paleologo、Jared Lander、David Epstein、John Krowas、Joshua Bloom、Den Pilsworth、John Myles-White以及很多已经忘了姓名的人士。

我还要感谢前些年生活中的一些人。首先是在AQR的前同事,他们都曾为我在pandas方面的工作喝彩,他们是:Alex Reyfman、Michael Wong、Tim Sargen、Oktay Kurbanov、Matthew Tschantz、Roni Israelov、Michael Katz、Chris Uga、Prasad Ramanan、Ted Square 和 Hoon Kim,以及我的指导教授Haynes Miller(麻省理工学院)和Mike West(杜克大学)。

2014年,我在更新本书代码示例、修正一些由于pandas变更产生的错误时,从Phillip Cloud 和 Joris Van den Bossche 处获得了重要帮助。

个人方面,感谢Casey在写作过程中为我提供了无价的日常支持,忍受我的情绪起伏直到我按计划表写出了最终手稿。最后,感谢我的父母 Bill 和Kim ,他们教会我如何去追寻梦想、永不止步。


規格參數

品牌 京東圖書
品牌屬地 中國

免責聲明

產品價格、包裝、規格等資訊如有調整,恕不另行通知。我們盡量做到及時更新產品資訊,但請以收到實物為準。使用產品前,請始終閱讀產品隨附的標籤、警告及說明。

查看詳情 {{ itemAct.title || '' }}

超值套裝

相似商品

{{ item.userActionNumberDesc }}
Yami wechat-share qr code

掃碼分享

利用Python进行数据分析(原书第2版)

{{ itemCurrency }}{{ item.valid_price }}
{{ itemCurrency }}{{ priceFormat(item.valid_price / item.bundle_specification) }}/{{ item.unit }}
{{ itemDiscount }}
{{ itemCurrency }}{{ item.valid_price }} {{ itemCurrency }}{{ priceFormat(item.valid_price / item.bundle_specification) }}/{{ item.unit }} {{ itemCurrency }}{{ item.invalid_price }} {{ itemDiscount }}
{{ itemCurrency }}{{ item.valid_price }}
權益價:
{{ itemCurrency }}{{ priceFormat(item.member_price) }}
立享權益
了解更多
後結束促銷
後開始秒殺 後結束秒殺
{{ getSeckillDesc(item.seckill_data) }}
{{ __("Pay with Gift Card to get sale price: :itemCurrency:price", {'itemCurrency': itemCurrency, 'price': (item.giftcard_price ? priceFormat(item.giftcard_price) : '0.00')}) }} ({{ itemCurrency }}{{ priceFormat(item.giftcard_price / item.bundle_specification) }}/{{ item.unit }}) 詳情
{{ $isZh ? coupon.coupon_name_sub : coupon.coupon_ename_sub | formatCurrency }}

已下架

我們不知道該商品何時或是否會重新有庫存。

當前地址無法配送
已售完
JD@CHINA 銷售
送至
{{ __("Ship to United States only") }}
滿69免運費
正品保證
{{ quantity }} {{ instockMsg }} {{ limitText }}
{{ buttonTypePin == 3 ? __("Scan to view more PinGo") : __("Scan to start") }}
商品有效期

搭配購買

合計 ${{ priceFormat(totalPrice) }}

已加入購物車

繼續逛逛

為你推薦

{{ item.brand_name }}

{{ item.item_name }}

{{ item.currency }}{{ item.market_price }}

{{ item.currency }}{{ item.unit_price }}

{{ item.currency }}{{ item.unit_price }}

優惠券

{{ coupon.coupon_name_new | formatCurrency }}
領取 已領取 已領完
{{ getCouponDescStr(coupon) }}
{{ coupon.use_time_desc }}
即將過期: {{ formatTime(coupon.use_end_time) }}

分享給好友

取消

亞米禮卡專享價

使用禮卡支付即可獲得禮卡專享價

規則說明

禮卡專享價是部分商品擁有的特殊優惠價格;

購買禮卡專享價商品時,若在結算時使用電子禮卡抵扣支付,且禮卡餘額足夠支付訂單中所有禮卡專享價商品的專享價總和,則可以啟用禮卡專享價;

不使用禮卡支付,或禮卡餘額不滿足上一條所述要求時,將無法啟用禮卡專享價,按照普通售價計算,但您仍然可以購買這些商品;

在購買禮卡專享價商品時,若餘額不足,可以在購物車或結算頁中點擊“充值”按鈕對禮卡進行購買和充值;

商品若擁有禮卡專享價,會顯示“專享”的特殊價格標記;

如有疑問,請隨時聯繫客服;

禮卡專享價相關規則最終解釋權歸亞米所有。

由 亞米 銷售

服務保障

Yami 從美國出貨,滿$49免運費
Yami 無憂退換

配送資訊

  • 美國

    標準配送 $5.99(不含阿拉斯加,夏威夷),最終價滿$49免運費

    本地配送$5.99(加州,紐約州,新澤西,麻省和賓夕法尼亞,以上州部分地區);最終價滿$49免運費

    兩日達(含阿拉斯加夏威夷)運費19.99美元起

退換政策

亞米網希望為我們的客戶提供最優秀的售後服務,讓所有人都能放心在亞米購物。亞米自營商品在滿足退換貨條件的情況下,可在收到包裹的30天之內退換商品(食品因商品質量問題7天內可退換;為了確保每位客戶都能獲得安全和高質量的商品,對於美妝類產品,一經開封或使用即不提供退款或退貨服務,質量問題除外;其他特殊商品需聯繫客服諮詢)。
感謝您的理解和支持。

查看詳情

由 亞米 銷售

亞米電子禮品卡使用規則

若購買時選擇自動儲值,訂單完成後禮品卡將自動儲值至您的帳戶;

若購買時選擇發送郵件,訂單完成後系統將自動發送卡號和密碼到您填寫的郵箱;

寄送郵件時,任何使用者均可使用郵件中的卡號密碼進行禮卡儲值,請妥善保管郵件資訊。

如接收郵件遇到問題,請聯絡客服處理;

發送郵件時,若禮卡沒有被兌換,可以補發郵件。若已經被其他用戶兌換,無法補償;

亞米網電子禮卡可用於購買自營或第三方商品;

亞米網電子禮卡沒有有效期限限制,長期有效;

亞米網電子禮卡的金額,可分多次使用;

亞米網電子禮卡業務規則,最終解釋權歸亞米網所有。

退換政策

已消費的電子禮卡不支持退款。

JD@CHINA 銷售

服務保障

Yami 從美國出貨,滿$49免運費
Yami 無憂退換

配送資訊

  • 美國

    標準配送 $5.99(不含阿拉斯加,夏威夷),最終價滿$49免運費

    本地配送$5.99(加州,紐約州,新澤西,麻省和賓夕法尼亞,以上州部分地區);最終價滿$49免運費

    兩日達(含阿拉斯加夏威夷)運費19.99美元起

退換政策

提供30天內退還保障。產品需全新未使用原包裝內,並附有購買憑證。產品品質問題、或錯發漏發等,由商家造成的失誤,將進行補發,或退款處理。其它原因需退貨費用由客戶自行承擔。

由 JD@CHINA 銷售

服務保障

Yami 跨店滿$69免運費
Yami 30天退換保障

亞米-中國集運倉

由亞米從中國精選並集合各大優秀店舖的商品至亞米中國整合中心,合併包裹後將一次合包跨國郵寄至您的地址。跨店包郵門檻低至$69。您將在多商家集合提供的廣泛選購商品中選購商品,輕鬆享有跨店鋪包郵後的低郵資。

退換政策

提供30天內退換保障。產品需在全新未使用的原包裝內,並附有購買憑證。產品品質問題、錯發、或漏發等商家造成的失誤,將進行退款處理。其它原因造成的退換貨郵費客戶將需要自行承擔。由於所有商品均長途跋涉,偶有簡易外包壓磨等但不涉及內部品質問題者,不予退換。

配送資訊

亞米中國集運 Consolidated Shipping 運費$9.99(訂單滿$69 包郵)

下單後2個工作天中國商家出貨,所有包裹抵達亞米中國整合中心(除特別情況及中國境內個別法定假日外)會合併包裹後透過UPS發往美國。 UPS從中國出貨後到美國境內的平均時間為10個工作天左右,可隨時根據直發單號追蹤查詢。受疫情影響,目前物流可能延遲5天左右。包裹需要客人簽收。如未簽收,客人須承擔包裹遺失風險。

由 JD@CHINA 銷售

服務保障

滿69免運費
正品保證

配送資訊

Yami Consolidated Shipping 運費$9.99(訂單滿$69包郵)


Seller will ship the orders within 1-2 business days. The logistics time limit is expected to be 7-15 working days. In case of customs clearance, the delivery time will be extended by 3-7 days. The final receipt date is subject to the information of the postal company.

積分規則

不參加任何折扣活動以及亞米會員積分制度。

退換政策

提供30天內退還保障。產品需全新未使用原包裝內,並附有購買憑證。產品品質問題、或錯發漏發等,由商家造成的失誤,將進行補發,或退款處理。其它原因需退貨費用由客戶自行承擔。

贈品

為您推薦

                                                       

                                                       

                                                       

                                                       

                                                       

                                                       

                                                       

                                                       

評論

分享您的感受,幫助更多用戶做出選擇。

撰寫評論
當前選擇尚無用戶評論,以下為此商品其他選項的評論內容。
排序
預設

當前商品
User Avatar VIP
:

{{ strLimit(comment, 200) }}

{{ comment.content }}

Review Image

{{ comment.imageList.length }} photos

Show Original

暫無符合條件的評論~

評論詳情

Yami Yami
:

{{ showTranslate(commentDetails) }}收起

{{ strLimit(commentDetails, 800) }}查看全部

Show Original

{{ commentDetails.content }}

Yami
查看更多

{{ formatTime(commentDetails.in_dtm) }} 已購買 {{ groupData }}

{{ commentDetails.likes_count }} {{ commentDetails.likes_count }} {{ commentDetails.reply_count }} {{ commentDetails.in_user == uid ? __('Delete') : __('Report') }}

請輸入內容

回覆{{ '(' + replyList.length + ')' }}

Yami Yami

{{ showTranslate(reply) }}收起

{{ strLimit(reply, 800) }}查看全部

Show Original

{{ reply.reply_content }}

{{ formatTime(reply.reply_in_dtm) }}

{{ reply.reply_likes_count }} {{ reply.reply_likes_count }} {{ reply.reply_reply_count }} {{ reply.reply_in_user == uid ? __('Delete') : __('Report') }}

請輸入內容

取消

這是到目前為止的所有評論!

發表評論
商品評分

請輸入評論

  • 一個好的暱稱,會讓你的評論更受歡迎!
  • 修改了這裡的暱稱,個人資料中的暱稱也將被修改。
感謝你的評論
你的好評可以幫助我們的社區發現更好的亞洲商品。

舉報

取消

確認刪除該評論嗎?

取消

{{ brandInfo.title }}

查看全部

品牌故事

{{ brandInfo.descView }} ...查看全部

{{ isZh ? album.topic_name : album.topic_ename }}

商品

{{ album.goods_count_info }}

購買數量

{{ album.bought_count_info }}

查看全部

{{ story.page_title }}

{{ story.page_desc }}

查看詳情
看了又看
品牌故事

{{ brandInfo.title }}

{{ brandInfo.desc }}
Yami

下載亞米應用